Exactitud del Xiaomi Mi Band 4 para contabilizar pasos en adultos con enfermedades respiratorias crónicas. Estudio de concordancia.

Contenido principal del artículo

Silvina Dell'Era
https://orcid.org/0000-0001-9186-6229
Elena Gimeno-Santos
https://orcid.org/0000-0001-5149-2015
Nahir Ayleen Fiad Chain
María Florencia Castellano Barneche
https://orcid.org/0009-0004-9557-5524
Gonzalo Macario Turón
Ilona Bykhovsky
https://orcid.org/0009-0007-0296-1365
María Carolina Balestrieri
Guadalupe Gracia
https://orcid.org/0000-0002-3744-6941
Sergio Adrián Terrasa
https://orcid.org/0000-0002-5246-0709

Resumen

Introducción: El Xiaomi Mi Band 4 (XMB4) demostró ser exacto para medir pasos en sujetos sanos, pero no ha sido estudiado en pacientes con enfermedades respiratorias crónicas (ERC). 


Objetivos: Evaluar la exactitud del XMB4 para cuantificar pasos caminados en pacientes con ERC. Secundariamente, evaluar su viabilidad y usabilidad.


Materiales y métodos: Estudio de concordancia contrastando los datos del XMB4 con la video-filmación (prueba de referencia). Fueron incluidos mayores de 18 años con diversas ERC y excluidos aquellos con deterioro cognitivo, limitaciones osteoarticulares y/o cardiovasculares que impedían la marcha. Realizamos un muestreo por conveniencia de pacientes que participaban de un programa de rehabilitación pulmonar.


Las variables estudiadas incluyeron número de pasos, distancia y tiempo caminado, velocidad de la marcha, viabilidad y usabilidad. Cada participante realizó cinco caminatas (5, 10 y 30 metros, y 5 minutos a ritmo lento y rápido). 


Para testear la equivalencia estadística, necesitamos incluir 33 pacientes y utilizamos el método de intervalo de confianza con una zona de equivalencia de ±15%. 


Resultados: Fueron incluidos 33 pacientes, 64% mujeres, con una mediana (P25-75) de edad de 64,9 (55,8 a 70,2) años. Los pasos registrados por el XMB4 fueron equivalentes a los de la video-filmación en las diferentes caminatas, excepto en la de 5 metros. Los pasos fueron subestimados con un error de medición menor al 15%.  


Conclusiones: El XMB4 tiene una exactitud aceptable para medir pasos en pacientes con ERC excepto en caminatas muy cortas, es viable y fácil de usar. 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Dell’Era, S., Gimeno-Santos, E. ., Fiad Chain, N. A. ., Castellano Barneche, M. F. ., Turón, G. M. ., Bykhovsky, I. ., Balestrieri, M. C. ., Gracia, G. ., & Terrasa, S. A. . (2024). Exactitud del Xiaomi Mi Band 4 para contabilizar pasos en adultos con enfermedades respiratorias crónicas. Estudio de concordancia . Respirar, 16(2), 101–112. https://doi.org/10.55720/respirar.16.2.1
Sección
Artículos Originales

Citas

Pitta F, Troosters T, Spruit MA et al. Characteristics of Physical Activities in Daily Life in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2005;171: 972–977. Doi:10.1164/rccm.200407-855oc

Granger C, McDonald CF, Irving L et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer 2014;83: 292–299. Doi:10.1016/j.lungcan.2013.11.014

Bahmer T, Kirsten AM, Waschki B et al. Prognosis and longitudinal changes of physical activity in idiopathic pulmonary fibrosis. BMC Pulm Med 2017;17: 104. Doi:10.1186/s12890-017-0444-0

Wickerson L, Rozenberg D, Janaudis-Ferreira T et al. Physical rehabilitation for lung transplant candidates and recipients: An evidence-informed clinical approach. World J Transplant 2016;6: 517–531. Doi:10.5500/wjt.v6.i3.517

Gimeno-Santos E, Frei A, Steurer-Stey C et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax 2014;69: 731–739. Doi:10.1136/thoraxjnl-2013-204763

Pitta F, Troosters T, Probst V et al. Potential consequences for stable chronic obstructive pulmonary disease patients who do not get the recommended minimum daily amount of physical activity]]>. Bras Pneumol 2006;32: 301–308. Doi:10.1590/s1806-37132006001100008

Pitta F, Troosters T, Probst V et al. Physical activity and hospitalization for exacerbation of COPD. Chest 2006;129: 536–544. Doi:10.1378/chest.129.3.536

Moy ML, Teylan M, Weston NA et al. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One 2013;8: e60400. Doi:10.1371/journal.pone.0060400

Mantoani LC, Rubio N, McKinstry B et al. Interventions to modify physical activity in patients with COPD: a systematic review. Eur Respir J 2016;48: 69–81. Doi:10.1183/13993003.01744-2015

Arbillaga-Etxarri A, Gimeno-Santos E, Barberan-Garcia A et al. Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban Training) to increase physical activity in patients with COPD: a randomised controlled trial. Eur Respir J 2018;52: 1800063. Doi:10.1183/13993003.00063-2018

Demeyer H, Louvaris Z, Frei A et al. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax 2017;72: 415–423. Doi:10.1136/thoraxjnl-2016-209026

Van Remoortel H, Raste Y, Louvaris Z et A. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012;7: e39198. Doi:10.1371/journal.pone.0039198

Langer D, Gosselink R, Sena R et al. Validation of two activity monitors in patients with COPD. Thorax 2009;64: 641–642. Doi:10.1136/thx.2008.112102

Nguyen HQ, Burr RL, Gill DP et al. Validation of the StepWatch device for measurement of free-living ambulatory activity in patients with chronic obstructive pulmonary disease. J Nurs Meas 2011;19: 76–90. Doi:10.1891/1061-3749.19.2.76

Vooijs M, Alpay LL, Snoeck-Stroband JB et al. Validity and usability of low-cost accelerometers for internet-based self-monitoring of physical activity in patients with chronic obstructive pulmonary disease. Interact J Med Res 2014;3: e14. Doi:10.2196/ijmr.3056

Henriksen A, Mikalsen MH, Woldaregay AZ et al. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res 2018;20: e110. Doi:10.2196/jmir.9157

Xie J, Wen D, Liang L et al. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR Mhealth Uhealth 2018;6: e94. Doi:10.2196/mhealth.9754

El-Amrawy F, Nounou MI. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc Inform Res 2015;21: 315–320. Doi:10.4258/hir.2015.21.4.315

Bai Y, Welk GJ, Nam YH et al. Comparison of Consumer and Research Monitors under Semistructured Settings. Med Sci Sports Exerc 2016;48: 151–158. Doi:10.1249/MSS.0000000000000727

Bai Y, Hibbing P, Mantis C et al. Comparative evaluation of heart rate-based monitors: Apple Watch vs Fitbit Charge HR. J Sports Sci 2018;36: 1734–1741. Doi:10.1080/02640414.2017.1412235

Nelson MB, Kaminsky LA, Dickin DC et al. Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. Med Sci Sports Exerc 2016;48: 1619–1628. Doi:10.1249/MSS.0000000000000933

Welk GJ, Bai Y, Lee JM et al. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies. Med Sci Sports Exerc 2019;51: 1767–1780. Doi:10.1249/MSS.0000000000001966

de la Casa Pérez A, Latorre Román PA, Muñoz Jiménez M et al. Is the Xiaomi Mi Band 4 an Accuracy Tool for Measuring Health-Related Parameters in Adults and Older People? An Original Validation Study. Int J Environ Res Public Health 2022;19: 1593. Doi:10.3390/ijerph19031593

Pino-Ortega J, Gómez-Carmona CD, Rico-González M. Accuracy of Xiaomi Mi Band 2.0, 3.0 and 4.0 to measure step count and distance for physical activity and healthcare in adults over 65 years. Gait Posture 2021;87: 6–10. Doi:10.1016/j.gaitpost.2021.04.015

Melanson EL, Knoll JR, Bell ML et al. Commercially available pedometers: considerations for accurate step counting. Prev Med 2004;39: 361–368. Doi:10.1016/j.ypmed.2004.01.032

Ministerio de Salud Argentina. Enfermedades respiratorias crónicas; 2020. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.argentina.gob.ar/salud/glosario/enfermedades-respiratorias-cronicas

WHO. World Health Organization. Diseases C. Living guidance for clinical management of COVID-19; 2021. [Internet]. [Consultado 1 Oct 2022]. Disponible en: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2

Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax 2006;61: 744–746. Doi:10.1136/thx.2006.061648

de Torres Tajés JP, Casanova Macario C, García-Talavera M. La disnea en la EPOC. Arch Bronconeumol 2005;41: 24–32. Doi:10.1016/S0210-5705(09)71003-9

Sant’Anna T, Escobar VC, Fontana AD et al. Evaluation of a new motion sensor in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2012;93: 2319–2325. Doi:10.1016/j.apmr.2012.05.027

Giner J, Macián V, Hernández C et al. Multicenter prospective study of respiratory patient education and instruction in the use of inhalers (EDEN study). Arch Bronconeumol 2002;38: 300–305. Doi:10.1016/s0300-2896(02)75222-8

Vitacca M, Paneroni M, Fracassi M et al. Inhaler technique knowledge and skills before and after an educational program in obstructive respiratory disease patients: A real-life pilot study. Pulmonology 2023;29: 130–137. Doi:10.1016/j.pulmoe.2020.04.010

Gao M, Kortum Philip, Oswald FL. Multi-Language Toolkit for the System Usability Scale. Int J Hum Comput Int 2020;36: 1883–1901. Doi:10.1080/10447318.2020.1801173

Sevilla-Gonzalez MDR, Moreno Loaeza L, Lazaro-Carrera LS et al. Spanish Version of the System Usability Scale for the Assessment of Electronic Tools: Development and Validation. JMIR Hum Factors 2020;7: e21161. Doi:10.2196/21161

Sealed Envelope. Power (sample size) calculators. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.sealedenvelope.com/power/continuous-equivalence/

Dixon PM, Saint-Maurice PF, Kim Y et al. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med Sci Sports Exerc 2018;50: 837–845. Doi:10.1249/mss.0000000000001481

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1: 307–310.

Blondeel A, Demeyer H, Janssens W et al. Accuracy of consumer-based activity trackers as measuring tool and coaching device in patients with COPD and healthy controls. PLoS One 2020;15: e0236676. Doi:10.1371/journal.pone.0236676

Domingos C, Costa P, Santos NC et al. Usability, Acceptability, and Satisfaction of a Wearable Activity Tracker in Older Adults: Observational Study in a Real-Life Context in Northern Portugal (Preprint). J Med Internet Res 2022;24: e26652. Doi:10.2196/preprints.26652

Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: Adding an adjective rating scale. JUX 2009;4: 114–123.

Gao M. Multi-Cultural Usability Assessment with System Usability Scale. Rice University 2019. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://repository.rice.edu/items/8e3e4586-fd6a-4586-bbca-b6183b62c20f

Pitta F, Troosters T, Probst VS et al. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur Respir J 2006;27: 1040–1055. Doi:10.1183/09031936.06.00064105

Demeyer H, Mohan D, Burtin C et al. Objectively Measured Physical Activity in Patients with COPD: Recommendations from an International Task Force on Physical Activity. Chronic Obstr Pulm Dis 2021;8: 528–550. Doi:10.15326/jcopdf.2021.0213