Factores pronósticos de mortalidad a 30 días en neumonía por SARS-CoV-2
Contenido principal del artículo
Resumen
Introducción: SARS-CoV-2 ha causado millones de muertes a nivel global desde su primer caso reportado en China. En Guatemala existen pocos estudios que describan los factores pronósticos. Nuestro objetivo fue determinar los factores asociados de mortalidad a 30 días en pacientes con neumonía (Nm) por SARS-CoV-2 y construir un modelo predictor.
Material y Métodos: Estudio retrospectivo en 144 sujetos en el Hospital Roosevelt de marzo a diciembre 2020 con criterios de Nm por SARS-CoV-2. Se revisó el expediente médico para datos clínicos y de laboratorio desde ingreso hasta alta hospitalaria o muerte.
Resultados: Se evaluaron 105 hombres y 39 mujeres con media de edad 53 años. El 47% tenía comorbilidades como diabetes mellitus 2 e hipertensión arterial sistémica. Promedio de días de hospitalización: 13. Cuadros leves a moderados de Síndrome de Distrés Respiratorio Agudo (SDRA): 92%. Se indicó ventilación mecánica invasiva (VMI) a 46 pacientes. La mortalidad general fue 35%. Factores asociados a mortalidad a 30 días: edad ≥50 años, inicio de síntomas ≥7 días, SDRA severo, radio NL >4,4, recibir VMI, alteración en LDH y procalcitonina. Nuestro modelo mostró que los mejores predictores de mortalidad eran alteración en procalcitonina (OR: 4,45), recibir VMI (OR: 112) y días de estancia hospitalaria (OR: 1,12) con precisión de 91,5% y área bajo la curva de 94,4%.
Conclusiones: Los factores pronósticos de mortalidad en pacientes guatemaltecos con Nm por SARS-CoV-2 son múltiples e incluyen rasgos demográficos, clínicos y serológicos; identificarlos y contar con un modelo pronóstico ayudará a brindar atención médica de precisión.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Li X, Cui W, Zhang F. Who Was the First Doctor to Report the COVID-19 Outbreak in Wuhan, China? J Nucl Med 2020;61(6):782-783. Doi:10.2967/jnumed.120.247262
WHO. COVID-19 epidemiological update – 22 December 2023. [Internet] [Consultado 23 dic 2023]. Disponible en: https://www.who.int/publications/m/item/covid-19-epidemiological-update---22-december-2023
OPS. La OMS caracteriza a COVID-19 como una pandemia. [Internet] [Consultado 23 dic 2023]. Disponible en: https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia#:
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). 2023. StatPearls. [Internet] [Consultado 23 dic 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK554776/
Stokes EK, Zambrano LD, Anderson KN et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep 2020;69(24):759-765. Doi:10.15585/mmwr.mm6924e2
Zhu J, Zhong Z, Ji P et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis [published correction appears in Fam Med Community Health. Fam Med Community Health 2020;8(2):e000406. Doi:10.1136/fmch-2020-000406
Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 2020;84:106504. Doi:10.1016/j.intimp.2020.106504
CDC. COVID-19 Mortality Update — United States, 2022. [Internet]. [Consultado 23 dic 2023]. Disponible en: https://www.cdc.gov/mmwr/volumes/72/wr/mm7218a4.htm
Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis 2021;21(1):855. Doi:10.1186/s12879-021-06536-3
Goyal DK, Mansab F, Iqbal A, Bhatti S. Early intervention likely improves mortality in COVID-19 infection. Clin Med (Lond) 2020;20(3):248–50. Doi: 10.7861/clinmed.2020-0214.
OPS. Manejo clínico de la COVID-19: orientaciones provisionales, 27 de mayo de 2020. [Internet]. [Consultado 23 dic 2023], Disponible en: https://www.paho.org/es/documents/clinical-management-covid-19-interim-guidance-who
Volpicelli G, Lamorte A, Villén T. What’s new in lung ultrasound during the COVID-19 pandemic. Intensive Care Med 2020;46(7):1445–8. Doi: 10.1007/s00134-020-06048-9
RECOVERY Collaborative Group, Horby P, Lim WS et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 2021;384(8):693-704. Doi:10.1056/NEJMoa2021436
Toniati P, Piva S, Cattalini M et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020;19(7):102568. Doi:10.1016/j.autrev.2020.102568
Ashktorab H, Pizuomo A, González NAF et al. A Comprehensive Analysis of COVID-19 Impact in Latin America. [Preimpresión]. Res Sq 2021;rs.3.rs-141245. Doi:10.21203/rs.3.rs-141245/v1
Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents 2020;34:339–343.
Kharroubi SA, Diab-El-Harake M. Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: A large US-based cohort study. Front Public Health 2022;10:1029190. Doi:10.3389/fpubh.2022.1029190
Ascencio-Montiel IJ, Ovalle-Luna OD, Rascón-Pacheco RA, Borja-Aburto VH, Chowell G. Comparative epidemiology of five waves of COVID-19 in Mexico, March 2020-August 2022. BMC Infect Dis 2022;22(1):813. Doi:10.1186/s12879-022-07800-w
Kumar A, Aggarwal R, Khanna P et al. Correlation of the SpO2/FiO2 (S/F) ratio and the PaO2/FiO2 (P/F) ratio in patients with COVID-19 pneumonia. Med Intensiva (Engl Ed) 2022;46(7):408-410. Doi:10.1016/j.medine.2021.10.011
Catoire P, Tellier E, de la Rivière C et al. Assessment of the SpO2/FiO2 ratio as a tool for hypoxemia screening in the emergency department. Am J Emerg Med 2021;44:116-120. Doi:10.1016/j.ajem.2021.01.092
Rocca E, Zanza C, Longhitano Y et al. Lung Ultrasound in Critical Care and Emergency Medicine: Clinical Review. Advances in Respiratory Medicine 2023; 91(3):203-223. Doi: 10.3390/arm91030017
Gil-Rodríguez J, Pérez de Rojas J, Aranda-Laserna P et al. Ultrasound findings of lung ultrasonography in COVID-19: A systematic review. Eur J Radiol 2022;148:110156. Doi:10.1016/j.ejrad.2022.110156
Schwalb A, Armyra E, Méndez-Aranda M, Ugarte-Gil C. COVID-19 in Latin America and the Caribbean: Two years of the pandemic. J Intern Med 2022;292(3):409-427. Doi:10.1111/joim.13499
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020;92(7):814-818. Doi:10.1002/jmv.25801
Toniati P, Piva S, Cattalini M et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020;19(7):102568. Doi:10.1016/j.autrev.2020.102568
Piscoya A, Parra Del Riego A, Cerna-Viacava R et al. Efficacy and harms of tocilizumab for the treatment of COVID-19 patients: A systematic review and meta-analysis. PLoS One 2022;17(6):e0269368. Doi:10.1371/journal.pone.0269368
Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis 2021;21(1):855. Doi:10.1186/s12879-021-06536-3
de Jong VMT, Rousset RZ, Antonio-Villa NE et al. Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. BMJ 2022;378:e069881. Doi:10.1136/bmj-2021-069881
Buttia C, Llanaj E, Raeisi-Dehkordi H et al. Prognostic models in COVID-19 infection that predict severity: a systematic review. Eur J Epidemiol 2023;38(4):355-372. Doi:10.1007/s10654-023-00973-x