Decellularization and Regeneration of Porcine Trachea: an Approach to Tissue Engineering

Main Article Content

Elisa Barrera Ramírez
https://orcid.org/0000-0002-2778-0882
Rubén Efraín Garrido Cardona
https://orcid.org/0000-0001-6083-5403
Alejandro Martínez Martínez
https://orcid.org/0000-0003-3448-910X
Luis Fernando Plenge Tellechea
https://orcid.org/0000-0002-1619-5004
Edna Rico Escobar
https://orcid.org/0000-0002-0933-0220

Abstract

Introduction: tissue engineering makes it possible to obtain organs as grafts from decellularized tissues, regenerated with autologous cells.


Objective: decellularize and regenerate porcine tracheas.


Materials and Methods: Porcine tracheas were decellularized by placing each one in the omentum of four Yorkshire pigs for regeneration in vivo. A trachea decellularized with triton (DT), decellularized with deoxycholate (DD), decellularized with deoxycholate and reinforced with a polymer, and epithelial cells (DDR), and a cryopreserved native (NC). After 8 days, the DD, NC and DDR were obtained; and on day 15, the DT.  The evaluation was mechanically and histologically, performing the case analysis.


Results: the decellularized tracheas preserved the integrity of the cartilage, with no mechanical differences, except for the DDR with greater rigidity. The regenerated tracheas presented less rigidity, except the DDR, which also lost the epithelium and vascularity. The DT, DD showed non-respiratory epithelium, fibrosis and vasculogenesis with inflammation.


Conclusions: the matrices retained their mechanical characteristics, in vivo regeneration offers advantages such as sterility, cell interaction, nutrients; it is simple, feasible and economical, but there is no control of cell growth and vascularization, and the tissues presented mechanical and histological alterations. The polymer prevented re-epithelialization and revascularization. This study opens the possibility of improving tissue engineering methodologies applied to tracheal tissue.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barrera Ramírez, E., Garrido Cardona, R. E., Martínez Martínez, A. ., Plenge Tellechea, L. F., & Rico Escobar, E. (2023). Decellularization and Regeneration of Porcine Trachea: an Approach to Tissue Engineering. Respirar, 15(3). https://doi.org/10.55720/respirar.15.3.5
Section
Artículos Originales
Author Biographies

Elisa Barrera Ramírez, Coordination of Medicine, Department of Health Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juárez

Full-time Research Professor in Medical Sciences

Rubén Efraín Garrido Cardona, Thoracic Surgery Service, Ciudad Juárez Specialties Medical Center

Thoracic Surgeon

Alejandro Martínez Martínez, Department of Chemical Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juárez

Full Time Professor and Scientist, Ciencias Químico Biológicas

Luis Fernando Plenge Tellechea, Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químicas, México.

Full-time research professor in Biological Chemical Sciences

Edna Rico Escobar, Department of Health Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juárez

Full-time Research Professor in Medical Sciences

References

Conconi MT, De Coppi P, Di Liddo R et al. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 2005; 18 (6): 727-34. DOI: 10.1111/j.1432-2277.2005.00082.x

Jungebluth P, Moll G, Baiguera S, Macchiarini P. Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther 2012; 91(1): 81-93. DOI: 10.1038/clpt.2011.270

Zheng H, Hu X, Li C, Xie H, Gao W, Chen C. Re-epithelializaiton by epithelial inoculation with recipient phenotype in heterotopically transplanted rat allografts. Chin Med J Engl 2014; 127(10): 1913-8.

Martinod E, Seguin A, Radu DM et al. A French Group for Airway Transplantation (FREGAT). Airway transplantation: a challenge for regenerative medicine. Eur J Med Res 2013; 29, 18-25. DOI: 10.1186/2047-783X-18-25

Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet 2012; 379 (9819): 943–952. DOI: 10.1016/S0140-6736(12)60073-7

Svenja H, Schenke-Layland K. Tracheal tissue engineering: building on a strong foundation. Expert Rev Med Devices 2013; 10 (1): 33–35. DOI: 10.1586/erd.12.74

Elliott MJ, De Coppi P, Speggiorin S et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012; 380 (9846): 994–1000. DOI: 10.1016/S0140-6736(12)60737-5

Birchall M, Macchiarini P. Airway transplantation: a debate worth having? Transpl Int 2008; 18 (6): 727-34. DOI: 10.1097/TP.0b013e31816a10e4

Neville WE, Bolanowski PJ, Kotia GG. Clinical experience with the silicone tracheal prosthesis. J Thorac Cardiovasc Surg 1990; (99): 604.

García-Araque HF, Gutiérrez-Vidal SE . Aspectos básicos del manejo de la vía aérea: anatomía y fisiología. Rev Mex de anestesiología 2015; 38 (2): 98-107.

Lopez-Vidriero MT. Mucus as a Natural Barrier. Respiration 1989; (55) :28. DOI:10.1159/000195748

Watson CJ, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth 2012; 108 (1): 29-42. DOI: 10.1093/bja/aer384

Tan Q, Steiner R, Hoerstrup SP et al. Tissue-engineered trachea: history, problems and the future. Eur J Cardiothorac Surg 2006; (30): 782–786. DOI: 10.1016/j.ejcts.2006.08.023

Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg 2002; 73(6):1 995-2004. DOI: 10.1016/s0003-4975(02)03564-6

Acosta L, Cruz PV, Zagalo C, Santiago N. Latrogenic tracheal stenosis following endotracheal intubation: a study of 20 clinical cases. Acta Otorrinol Esp 2004; 54(3): 202-10. DOI: 10.1016/s0001-6519(03)78405-2

Pacheco CR, Rivero O, Porter JK. Experimental reconstructive surgery of the trachea. J Thorac Surg 1954; (27): 554–564.

Garrido-Cardona RE, Rico-Escobar E, Barrera-Ramírez E. Historia y avances en trasplante de tráquea en México. Gac Med Mex 2015; 151:553-6.

Haykal S, Salna M, Zhou Y et al. Double-chamber rotating bioreactor for dynamic perfusion cell seeding of large-segment tracheal allografts: comparison to conventional static methods. Tissue Eng Part C Methods 2014; 20(8): 681-92. DOI: 10.1089/ten.TEC.2013.0627

Liu Y, Nakamura T, Yamamoto Y et al. Immunosuppressant- free allotransplantation of the trachea: the antigenicity of tracheal grafts can be reduced by removing the epithelium and mixed glands from the graft by detergent treatment. J Thorac Cardiovasc Surg 2000; (120): 108–114. DOI: 10.1067/mtc.2000.106655

Khalil-Marzouk JF. Allograft replacement of the trachea. Experimental synchronous revascularization of composite thyrotracheal transplant. J Thorac Cardiovasc Surg 1993; (105): 242–246.

Delaere PR, Liu Z, Sciot R et al. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg 1996; (122): 1201–1208.

Kutten JC, McGovern D, Hobson CM et al. Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function. Tissue Eng Part A 2015; 21(1-2):75-84. DOI: 10.1089/ten.TEA.2014.0089

Wurtz A, Hysi I, Zawadzki C et al. Construction of a tube- shaped tracheal substitute using fascial flap-wrapped revascularized allogenic aorta. Eur J Cardiothorac Surg 2012; (41): 663–668. DOI: 10.1093/ejcts/ezr012

Walles T, Giere B, Hofmann M et al. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg 2004; (128): 900-6. DOI: 10.1016/j.jtcvs.2004.07.036

Ershadi R, Rahim M, Jahany S, Rakei S. Transplantation of the decellularized tracheal allograft in animal model (rabbit). Asian J Surg 2017; 1015-9584 (17) 30005-2. DOI: 10.1016/j.asjsur.2017.02.007

Delaere P, Van Raemdonck D, Vranckx J. Tracheal transplantation. Intensive Care Med 2019; 45:391–393. DOI: 10.1007/s00134-018-5445-9

Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004; (6): 41-75. DOI: 10.1146/annurev.bioeng.6.040803.140027

Baiguera S, Jungebluth P, Mazzanti B, Macchiarini P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int 2012; (4):369-82. DOI: 10.1111/j.1432-2277.2011.01426.x

Remlinger NT, Czajka CA, Juhas ME et al. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction Biomaterials 2010; (13):3520-6. DOI: 10.1016/j.biomaterials.2010.01.067

Jungebluth P, Go T, Asnaghi A et al. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J Thorac Cardiovasc Surg 2009; 138(3): 586-593. DOI: 10.1016/j.jtcvs.2008.09.085

Johnson C, Sheshadri P, Ketchum JM, Narayanan LK, Weinberger PM, Shirwaiker RA. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering. J Mech Behav Biomed Mater 2016; (59): 572-85. DOI: 10.1016/j.jmbbm.2016.03.024

Wee Ling H, Boon Hean O, Yeong Phang L, Chong Hee L. Human tracheal Allograft Banking: A Singapore experience and review on recent progress. J Transplant Technol Res 2013; 3:2. DOI: 10.4172/2161-0991.1000123

Geler DA, Sykes LK, Geler MR. A review of thimerosal (merthiolate) and its ethylmercury breakdown product specific historical consideration regarding safety and effetiveness. J Toxicol Environ Health B Crit Rev 2007; (10): 575-596. DOI: 10.1080/10937400701389875

Kunachak S, Vajaradul Y, Rerkamnuaychok B, Praneetvatakul V, Rochanawutanon M. Fate of mucosal healing in transplanted deep frozen irradiated tracheal homograft. Otolaryngol Head Neck Surg 2007; (136): 1010-1013. DOI: 10.1016/j.otohns.2006.09.004

Escalante Cobo JL, Del Río Gallegos F. Preservación de órganos. Medicina intensiva 2009; 33(6): 282-292.

Jones MC, Rueggeberg FA, Cunningham AJ et al. Biomechanical changes from long-term freezer storage and cellular reduction of trachealscaffoldings. Laryngoscope 2015; 125(1): 16-22. DOI: 10.1002/lary.24853

Partner R, Nagel-Heyer S, Goepfert C et al. Bioreactor design for tissue engineering. J Biosci Bioeng 2005; (100): 235–245. DOI: 10.1263/jbb.100.235

Fishman JM, Lowdell M, Birchall MA. Stem cell-based organ replacements Airway and lung tissue engineering. Seminars in Pediatric Surgery 2014; 23 (3): 119-126. DOI: 10.1053/j.sempedsurg.2014.04.002

Gong Y, Xue JX, Zhang WJ et al. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2011; (32): 2265–2273. DOI: 10.1016/j.biomaterials.2010.11.078

Weidenecher M, Tucker HM, Awadallah A et al. Fabrication of a neotrachea using engineered cartilage. Laryngoscope 2008; (118): 593–598. DOI: 10.1097/MLG.0b013e318161f9f8

Imaizumi M, Nomoto Y, Sato Y et al. Evaluation of the use of induced pluripotent stem cells (iPSCs) for the regeneration of tracheal cartilage. Cell Transplant 2013; (22): 341–353. DOI: 10.3727/096368912X653147

Kalathur M, Baiguera S, Macchiarini P. Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci 2010; (67): 4185–4196. DOI: 10.1007/s00018-010-0499-z

Jana T, Khabbaz E, Bush CM et al. The body as a living bioreactor: a feasibility study of pedicle flaps for tracheal transplantation. Eur Arch Otorhinolaryngol 2013; (270): 181–186. DOI: 10.1007/s00405-012-2105-5

Olender E, Uhrynowska-Tyszkiewicz I, Kaminski A. Revitalization of biostatic tissue allografts: new perspectives in tissue transplantology. Transplant Proc 2011; 43 (8): 3137-41. DOI: 10.1016/j.transproceed.2011.08.069

Peloso A, Dhal A, Zambon JP et al. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther 2015; 1; 6:107. DOI: 10.1186/s13287-015-0089-y

Hoyos Serrano M, Flores P, Lesly P. Tipos de radiación, aplicaciones, beneficios y riesgos. Rev Act Clin Med 2013; 37: 1798-1803.

Mauck RL, Yuan X, Tuan RS. Hydrogels in regenerative medicine. Adv Mater 2009; 4;21(32-33): 3307-29. DOI: 10.1002/adma.200802106

Jonsen AR. Casuistry as Methodological. JAMA 1989; 298.

Hashimoto M, Nakanishi R, Umesue M, Muranaka H, Hachida M, Yasumoto K. Feasibility of cryopreserved tracheal xenotransplants with the use of short course immunosuppression. J Thorac Cardiovasc Surg 2001;121:241-248. DOI: 10.1067/mtc.2001.112206

Giraldo-Gomez DM, Julieta Garcia-Lopez S, Tamay-de-Dios L et al. Mater Sci Eng C Mater Biol Appl 2019; 105: 110142. DOI: 10.1016/j.msec.2019.110142

Crowley C, Birchall M, Seifalian AM. Trachea transplantation: from laboratory to patient. J Tissue Eng Regen Med 2014;4(7):524–31. DOI: 10.1002/term.1847

Kajbafzadeh AM, Sabetkish S, Sabetkish N et al. In-vivo trachea regeneration: fabrication of a tissue-engineered trachea in nude mice using the body as a natural bioreactor. Surg Today 2015; 45(8): 1040-8. DOI: 10.1007/s00595-014-0993-2

Aoki FG, Varma R, Marin-Araujo AE et al. De-epithelialization of porcine tracheal allografts as an approach for tracheal tissue engineering. Sci Rep 2019; 9: 1–12. DOI: 10.1038/s41598-019-48450-4.

Hiwatashi S, Iwai R, Nakayama Y et al. Successful tracheal regeneration using biofabricated autologous analogues without artificial supports. Sci Rep 2022; 12: 20279. DOI: 10.1038/s41598-022-24798-y.