Exactitud del Xiaomi Mi Band 4 para contabilizar pasos en adultos con enfermedades respiratorias crónicas. Estudio de concordancia.
Contenido principal del artículo
Resumen
Introducción: El Xiaomi Mi Band 4 (XMB4) demostró ser exacto para medir pasos en sujetos sanos, pero no ha sido estudiado en pacientes con enfermedades respiratorias crónicas (ERC).
Objetivos: Evaluar la exactitud del XMB4 para cuantificar pasos caminados en pacientes con ERC. Secundariamente, evaluar su viabilidad y usabilidad.
Materiales y métodos: Estudio de concordancia contrastando los datos del XMB4 con la video-filmación (prueba de referencia). Fueron incluidos mayores de 18 años con diversas ERC y excluidos aquellos con deterioro cognitivo, limitaciones osteoarticulares y/o cardiovasculares que impedían la marcha. Realizamos un muestreo por conveniencia de pacientes que participaban de un programa de rehabilitación pulmonar.
Las variables estudiadas incluyeron número de pasos, distancia y tiempo caminado, velocidad de la marcha, viabilidad y usabilidad. Cada participante realizó cinco caminatas (5, 10 y 30 metros, y 5 minutos a ritmo lento y rápido).
Para testear la equivalencia estadística, necesitamos incluir 33 pacientes y utilizamos el método de intervalo de confianza con una zona de equivalencia de ±15%.
Resultados: Fueron incluidos 33 pacientes, 64% mujeres, con una mediana (P25-75) de edad de 64,9 (55,8 a 70,2) años. Los pasos registrados por el XMB4 fueron equivalentes a los de la video-filmación en las diferentes caminatas, excepto en la de 5 metros. Los pasos fueron subestimados con un error de medición menor al 15%.
Conclusiones: El XMB4 tiene una exactitud aceptable para medir pasos en pacientes con ERC excepto en caminatas muy cortas, es viable y fácil de usar.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Pitta F, Troosters T, Spruit MA et al. Characteristics of Physical Activities in Daily Life in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2005;171: 972–977. Doi:10.1164/rccm.200407-855oc
Granger C, McDonald CF, Irving L et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer 2014;83: 292–299. Doi:10.1016/j.lungcan.2013.11.014
Bahmer T, Kirsten AM, Waschki B et al. Prognosis and longitudinal changes of physical activity in idiopathic pulmonary fibrosis. BMC Pulm Med 2017;17: 104. Doi:10.1186/s12890-017-0444-0
Wickerson L, Rozenberg D, Janaudis-Ferreira T et al. Physical rehabilitation for lung transplant candidates and recipients: An evidence-informed clinical approach. World J Transplant 2016;6: 517–531. Doi:10.5500/wjt.v6.i3.517
Gimeno-Santos E, Frei A, Steurer-Stey C et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax 2014;69: 731–739. Doi:10.1136/thoraxjnl-2013-204763
Pitta F, Troosters T, Probst V et al. Potential consequences for stable chronic obstructive pulmonary disease patients who do not get the recommended minimum daily amount of physical activity]]>. Bras Pneumol 2006;32: 301–308. Doi:10.1590/s1806-37132006001100008
Pitta F, Troosters T, Probst V et al. Physical activity and hospitalization for exacerbation of COPD. Chest 2006;129: 536–544. Doi:10.1378/chest.129.3.536
Moy ML, Teylan M, Weston NA et al. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One 2013;8: e60400. Doi:10.1371/journal.pone.0060400
Mantoani LC, Rubio N, McKinstry B et al. Interventions to modify physical activity in patients with COPD: a systematic review. Eur Respir J 2016;48: 69–81. Doi:10.1183/13993003.01744-2015
Arbillaga-Etxarri A, Gimeno-Santos E, Barberan-Garcia A et al. Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban Training) to increase physical activity in patients with COPD: a randomised controlled trial. Eur Respir J 2018;52: 1800063. Doi:10.1183/13993003.00063-2018
Demeyer H, Louvaris Z, Frei A et al. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax 2017;72: 415–423. Doi:10.1136/thoraxjnl-2016-209026
Van Remoortel H, Raste Y, Louvaris Z et A. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012;7: e39198. Doi:10.1371/journal.pone.0039198
Langer D, Gosselink R, Sena R et al. Validation of two activity monitors in patients with COPD. Thorax 2009;64: 641–642. Doi:10.1136/thx.2008.112102
Nguyen HQ, Burr RL, Gill DP et al. Validation of the StepWatch device for measurement of free-living ambulatory activity in patients with chronic obstructive pulmonary disease. J Nurs Meas 2011;19: 76–90. Doi:10.1891/1061-3749.19.2.76
Vooijs M, Alpay LL, Snoeck-Stroband JB et al. Validity and usability of low-cost accelerometers for internet-based self-monitoring of physical activity in patients with chronic obstructive pulmonary disease. Interact J Med Res 2014;3: e14. Doi:10.2196/ijmr.3056
Henriksen A, Mikalsen MH, Woldaregay AZ et al. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res 2018;20: e110. Doi:10.2196/jmir.9157
Xie J, Wen D, Liang L et al. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR Mhealth Uhealth 2018;6: e94. Doi:10.2196/mhealth.9754
El-Amrawy F, Nounou MI. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc Inform Res 2015;21: 315–320. Doi:10.4258/hir.2015.21.4.315
Bai Y, Welk GJ, Nam YH et al. Comparison of Consumer and Research Monitors under Semistructured Settings. Med Sci Sports Exerc 2016;48: 151–158. Doi:10.1249/MSS.0000000000000727
Bai Y, Hibbing P, Mantis C et al. Comparative evaluation of heart rate-based monitors: Apple Watch vs Fitbit Charge HR. J Sports Sci 2018;36: 1734–1741. Doi:10.1080/02640414.2017.1412235
Nelson MB, Kaminsky LA, Dickin DC et al. Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. Med Sci Sports Exerc 2016;48: 1619–1628. Doi:10.1249/MSS.0000000000000933
Welk GJ, Bai Y, Lee JM et al. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies. Med Sci Sports Exerc 2019;51: 1767–1780. Doi:10.1249/MSS.0000000000001966
de la Casa Pérez A, Latorre Román PA, Muñoz Jiménez M et al. Is the Xiaomi Mi Band 4 an Accuracy Tool for Measuring Health-Related Parameters in Adults and Older People? An Original Validation Study. Int J Environ Res Public Health 2022;19: 1593. Doi:10.3390/ijerph19031593
Pino-Ortega J, Gómez-Carmona CD, Rico-González M. Accuracy of Xiaomi Mi Band 2.0, 3.0 and 4.0 to measure step count and distance for physical activity and healthcare in adults over 65 years. Gait Posture 2021;87: 6–10. Doi:10.1016/j.gaitpost.2021.04.015
Melanson EL, Knoll JR, Bell ML et al. Commercially available pedometers: considerations for accurate step counting. Prev Med 2004;39: 361–368. Doi:10.1016/j.ypmed.2004.01.032
Ministerio de Salud Argentina. Enfermedades respiratorias crónicas; 2020. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.argentina.gob.ar/salud/glosario/enfermedades-respiratorias-cronicas
WHO. World Health Organization. Diseases C. Living guidance for clinical management of COVID-19; 2021. [Internet]. [Consultado 1 Oct 2022]. Disponible en: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2
Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax 2006;61: 744–746. Doi:10.1136/thx.2006.061648
de Torres Tajés JP, Casanova Macario C, García-Talavera M. La disnea en la EPOC. Arch Bronconeumol 2005;41: 24–32. Doi:10.1016/S0210-5705(09)71003-9
Sant’Anna T, Escobar VC, Fontana AD et al. Evaluation of a new motion sensor in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2012;93: 2319–2325. Doi:10.1016/j.apmr.2012.05.027
Giner J, Macián V, Hernández C et al. Multicenter prospective study of respiratory patient education and instruction in the use of inhalers (EDEN study). Arch Bronconeumol 2002;38: 300–305. Doi:10.1016/s0300-2896(02)75222-8
Vitacca M, Paneroni M, Fracassi M et al. Inhaler technique knowledge and skills before and after an educational program in obstructive respiratory disease patients: A real-life pilot study. Pulmonology 2023;29: 130–137. Doi:10.1016/j.pulmoe.2020.04.010
Gao M, Kortum Philip, Oswald FL. Multi-Language Toolkit for the System Usability Scale. Int J Hum Comput Int 2020;36: 1883–1901. Doi:10.1080/10447318.2020.1801173
Sevilla-Gonzalez MDR, Moreno Loaeza L, Lazaro-Carrera LS et al. Spanish Version of the System Usability Scale for the Assessment of Electronic Tools: Development and Validation. JMIR Hum Factors 2020;7: e21161. Doi:10.2196/21161
Sealed Envelope. Power (sample size) calculators. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.sealedenvelope.com/power/continuous-equivalence/
Dixon PM, Saint-Maurice PF, Kim Y et al. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med Sci Sports Exerc 2018;50: 837–845. Doi:10.1249/mss.0000000000001481
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1: 307–310.
Blondeel A, Demeyer H, Janssens W et al. Accuracy of consumer-based activity trackers as measuring tool and coaching device in patients with COPD and healthy controls. PLoS One 2020;15: e0236676. Doi:10.1371/journal.pone.0236676
Domingos C, Costa P, Santos NC et al. Usability, Acceptability, and Satisfaction of a Wearable Activity Tracker in Older Adults: Observational Study in a Real-Life Context in Northern Portugal (Preprint). J Med Internet Res 2022;24: e26652. Doi:10.2196/preprints.26652
Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: Adding an adjective rating scale. JUX 2009;4: 114–123.
Gao M. Multi-Cultural Usability Assessment with System Usability Scale. Rice University 2019. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://repository.rice.edu/items/8e3e4586-fd6a-4586-bbca-b6183b62c20f
Pitta F, Troosters T, Probst VS et al. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur Respir J 2006;27: 1040–1055. Doi:10.1183/09031936.06.00064105
Demeyer H, Mohan D, Burtin C et al. Objectively Measured Physical Activity in Patients with COPD: Recommendations from an International Task Force on Physical Activity. Chronic Obstr Pulm Dis 2021;8: 528–550. Doi:10.15326/jcopdf.2021.0213