Accuracy of the Xiaomi Mi Band 4 for Steps Counting in Adults with Chronic Respiratory Diseases. Agreement Study.

Main Article Content

Silvina Dell'Era
https://orcid.org/0000-0001-9186-6229
Elena Gimeno-Santos
https://orcid.org/0000-0001-5149-2015
Nahir Ayleen Fiad Chain
María Florencia Castellano Barneche
https://orcid.org/0009-0004-9557-5524
Gonzalo Macario Turón
Ilona Bykhovsky
https://orcid.org/0009-0007-0296-1365
María Carolina Balestrieri
Guadalupe Gracia
https://orcid.org/0000-0002-3744-6941
Sergio Adrián Terrasa
https://orcid.org/0000-0002-5246-0709

Abstract

Introduction: Xiaomi Mi Band 4 (XMB4) has been shown to be accurate to measure steps in healthy subjects, but has not been studied in patients with chronic respiratory diseases (CRD).


Objectives: To evaluate the accuracy of the XMB4 to quantify steps walked in patients with CRD. Secondarily, evaluate its feasibility and usability.


Materials and methods: Agreement study compared the XMB4 data with the video (reference test). Adults aged 18 years or older with various CRD were included and those with cognitive impairment, osteoarticular and/or cardiovascular limitations that prevented walking were excluded. We conducted a convenience sampling of patients participating in a pulmonary rehabilitation program.


Outcome measures studied included number of steps, distance and time walked, walking speed, feasibility and usability. Each participant performed five walks (5, 10 and 30 meters, and 5 minutes at a slow and fast pace).


To test statistical equivalence we need to include 33 patients and use the confidence interval method with an equivalence zone of ±15%.


Results: 33 patients were included, 64% women, with a median (P25-75) age of 64.9 (55.8 to 70.2) years. The steps recorded by the XMB4 were equivalent to those of the video in the different walks, except for the 5-meter walk. The steps were underestimated with a measurement error of less than 15%.


Conclusions: XMB4 has acceptable accuracy for measuring steps in patients with CRD except for very short walks, it is feasible and easy to use.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dell’Era, S., Gimeno-Santos, E. ., Fiad Chain, N. A. ., Castellano Barneche, M. F. ., Turón, G. M. ., Bykhovsky, I. ., Balestrieri, M. C. ., Gracia, G. ., & Terrasa, S. A. . (2024). Accuracy of the Xiaomi Mi Band 4 for Steps Counting in Adults with Chronic Respiratory Diseases. Agreement Study. Respirar, 16(2), 101–112. https://doi.org/10.55720/respirar.16.2.1
Section
Artículos Originales

References

Pitta F, Troosters T, Spruit MA et al. Characteristics of Physical Activities in Daily Life in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2005;171: 972–977. Doi:10.1164/rccm.200407-855oc

Granger C, McDonald CF, Irving L et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer 2014;83: 292–299. Doi:10.1016/j.lungcan.2013.11.014

Bahmer T, Kirsten AM, Waschki B et al. Prognosis and longitudinal changes of physical activity in idiopathic pulmonary fibrosis. BMC Pulm Med 2017;17: 104. Doi:10.1186/s12890-017-0444-0

Wickerson L, Rozenberg D, Janaudis-Ferreira T et al. Physical rehabilitation for lung transplant candidates and recipients: An evidence-informed clinical approach. World J Transplant 2016;6: 517–531. Doi:10.5500/wjt.v6.i3.517

Gimeno-Santos E, Frei A, Steurer-Stey C et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax 2014;69: 731–739. Doi:10.1136/thoraxjnl-2013-204763

Pitta F, Troosters T, Probst V et al. Potential consequences for stable chronic obstructive pulmonary disease patients who do not get the recommended minimum daily amount of physical activity]]>. Bras Pneumol 2006;32: 301–308. Doi:10.1590/s1806-37132006001100008

Pitta F, Troosters T, Probst V et al. Physical activity and hospitalization for exacerbation of COPD. Chest 2006;129: 536–544. Doi:10.1378/chest.129.3.536

Moy ML, Teylan M, Weston NA et al. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One 2013;8: e60400. Doi:10.1371/journal.pone.0060400

Mantoani LC, Rubio N, McKinstry B et al. Interventions to modify physical activity in patients with COPD: a systematic review. Eur Respir J 2016;48: 69–81. Doi:10.1183/13993003.01744-2015

Arbillaga-Etxarri A, Gimeno-Santos E, Barberan-Garcia A et al. Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban Training) to increase physical activity in patients with COPD: a randomised controlled trial. Eur Respir J 2018;52: 1800063. Doi:10.1183/13993003.00063-2018

Demeyer H, Louvaris Z, Frei A et al. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax 2017;72: 415–423. Doi:10.1136/thoraxjnl-2016-209026

Van Remoortel H, Raste Y, Louvaris Z et A. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012;7: e39198. Doi:10.1371/journal.pone.0039198

Langer D, Gosselink R, Sena R et al. Validation of two activity monitors in patients with COPD. Thorax 2009;64: 641–642. Doi:10.1136/thx.2008.112102

Nguyen HQ, Burr RL, Gill DP et al. Validation of the StepWatch device for measurement of free-living ambulatory activity in patients with chronic obstructive pulmonary disease. J Nurs Meas 2011;19: 76–90. Doi:10.1891/1061-3749.19.2.76

Vooijs M, Alpay LL, Snoeck-Stroband JB et al. Validity and usability of low-cost accelerometers for internet-based self-monitoring of physical activity in patients with chronic obstructive pulmonary disease. Interact J Med Res 2014;3: e14. Doi:10.2196/ijmr.3056

Henriksen A, Mikalsen MH, Woldaregay AZ et al. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res 2018;20: e110. Doi:10.2196/jmir.9157

Xie J, Wen D, Liang L et al. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR Mhealth Uhealth 2018;6: e94. Doi:10.2196/mhealth.9754

El-Amrawy F, Nounou MI. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Healthc Inform Res 2015;21: 315–320. Doi:10.4258/hir.2015.21.4.315

Bai Y, Welk GJ, Nam YH et al. Comparison of Consumer and Research Monitors under Semistructured Settings. Med Sci Sports Exerc 2016;48: 151–158. Doi:10.1249/MSS.0000000000000727

Bai Y, Hibbing P, Mantis C et al. Comparative evaluation of heart rate-based monitors: Apple Watch vs Fitbit Charge HR. J Sports Sci 2018;36: 1734–1741. Doi:10.1080/02640414.2017.1412235

Nelson MB, Kaminsky LA, Dickin DC et al. Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. Med Sci Sports Exerc 2016;48: 1619–1628. Doi:10.1249/MSS.0000000000000933

Welk GJ, Bai Y, Lee JM et al. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies. Med Sci Sports Exerc 2019;51: 1767–1780. Doi:10.1249/MSS.0000000000001966

de la Casa Pérez A, Latorre Román PA, Muñoz Jiménez M et al. Is the Xiaomi Mi Band 4 an Accuracy Tool for Measuring Health-Related Parameters in Adults and Older People? An Original Validation Study. Int J Environ Res Public Health 2022;19: 1593. Doi:10.3390/ijerph19031593

Pino-Ortega J, Gómez-Carmona CD, Rico-González M. Accuracy of Xiaomi Mi Band 2.0, 3.0 and 4.0 to measure step count and distance for physical activity and healthcare in adults over 65 years. Gait Posture 2021;87: 6–10. Doi:10.1016/j.gaitpost.2021.04.015

Melanson EL, Knoll JR, Bell ML et al. Commercially available pedometers: considerations for accurate step counting. Prev Med 2004;39: 361–368. Doi:10.1016/j.ypmed.2004.01.032

Ministerio de Salud Argentina. Enfermedades respiratorias crónicas; 2020. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.argentina.gob.ar/salud/glosario/enfermedades-respiratorias-cronicas

WHO. World Health Organization. Diseases C. Living guidance for clinical management of COVID-19; 2021. [Internet]. [Consultado 1 Oct 2022]. Disponible en: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2

Laszlo G. Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax 2006;61: 744–746. Doi:10.1136/thx.2006.061648

de Torres Tajés JP, Casanova Macario C, García-Talavera M. La disnea en la EPOC. Arch Bronconeumol 2005;41: 24–32. Doi:10.1016/S0210-5705(09)71003-9

Sant’Anna T, Escobar VC, Fontana AD et al. Evaluation of a new motion sensor in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 2012;93: 2319–2325. Doi:10.1016/j.apmr.2012.05.027

Giner J, Macián V, Hernández C et al. Multicenter prospective study of respiratory patient education and instruction in the use of inhalers (EDEN study). Arch Bronconeumol 2002;38: 300–305. Doi:10.1016/s0300-2896(02)75222-8

Vitacca M, Paneroni M, Fracassi M et al. Inhaler technique knowledge and skills before and after an educational program in obstructive respiratory disease patients: A real-life pilot study. Pulmonology 2023;29: 130–137. Doi:10.1016/j.pulmoe.2020.04.010

Gao M, Kortum Philip, Oswald FL. Multi-Language Toolkit for the System Usability Scale. Int J Hum Comput Int 2020;36: 1883–1901. Doi:10.1080/10447318.2020.1801173

Sevilla-Gonzalez MDR, Moreno Loaeza L, Lazaro-Carrera LS et al. Spanish Version of the System Usability Scale for the Assessment of Electronic Tools: Development and Validation. JMIR Hum Factors 2020;7: e21161. Doi:10.2196/21161

Sealed Envelope. Power (sample size) calculators. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://www.sealedenvelope.com/power/continuous-equivalence/

Dixon PM, Saint-Maurice PF, Kim Y et al. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med Sci Sports Exerc 2018;50: 837–845. Doi:10.1249/mss.0000000000001481

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1: 307–310.

Blondeel A, Demeyer H, Janssens W et al. Accuracy of consumer-based activity trackers as measuring tool and coaching device in patients with COPD and healthy controls. PLoS One 2020;15: e0236676. Doi:10.1371/journal.pone.0236676

Domingos C, Costa P, Santos NC et al. Usability, Acceptability, and Satisfaction of a Wearable Activity Tracker in Older Adults: Observational Study in a Real-Life Context in Northern Portugal (Preprint). J Med Internet Res 2022;24: e26652. Doi:10.2196/preprints.26652

Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: Adding an adjective rating scale. JUX 2009;4: 114–123.

Gao M. Multi-Cultural Usability Assessment with System Usability Scale. Rice University 2019. [Internet]. [Consultado 3 Dic 2023]. Disponible en: https://repository.rice.edu/items/8e3e4586-fd6a-4586-bbca-b6183b62c20f

Pitta F, Troosters T, Probst VS et al. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur Respir J 2006;27: 1040–1055. Doi:10.1183/09031936.06.00064105

Demeyer H, Mohan D, Burtin C et al. Objectively Measured Physical Activity in Patients with COPD: Recommendations from an International Task Force on Physical Activity. Chronic Obstr Pulm Dis 2021;8: 528–550. Doi:10.15326/jcopdf.2021.0213