Hypoxemia and the Hypertension Risk in Obstructive Sleep Apnea

Main Article Content

Eduardo Borsini
https://orcid.org/0000-0003-2930-6022
Magalí Blanco
https://orcid.org/0000-0002-7405-7961
Miguel Schiavone
https://orcid.org/0000-0002-4494-7576
Alejandro Salvado
https://orcid.org/0000-0002-5967-3598
Ignacio Bledel
https://orcid.org/0000-0001-9823-8989
Carlos Nigro

Abstract

Introduction: there is limited information about the role of hypoxemia degree as a risk factor for hypertension (HTN) in patients with obstructive sleep apnea (OSA). The objective of this study is to assess hypoxemia as an independent risk factor for HTN in a work model based on real-life patients examined at sleep unit. Methods: this retrospective study consisted of a predictive model using multiple logistic regression to establish the relationship between HTN and age, sex, body mass index (BMI), apnea/hypopnea index (AHI) and time below SO2 ≤ 90% (T90 ≥ 3%). Results: we included 3.854 patients (median age: 55 years), mostly men (61.5%). According to the model, the variables that were significantly associated with HTN were: age (OR: 3.27 – 3.29, CI95% 2.83 – 3.80, p < 0.0001), male sex (OR 1.35, CI95% 1.17 – 1.56, p < 0.001), Obesity (OR 1.83, CI95% 1.59 – 2.11, p < 0.0001), AHI > 15 events per hour (OR 1.22, CI95% 1.05 – 1.43, p < 0.01) and T90 ≥ 3% (OR 1.56 – 1.57, CI95% 1.32 – 1.84, p < 0.0001).  Conclusion: in a clinical population of subjects suspected of OSA, nocturnal hypoxemia measure as T90 ≥ 3% was associated with HTN.

Downloads

Download data is not yet available.

Article Details

How to Cite
Borsini, E., Blanco, M., Schiavone, M., Salvado, A., Bledel, I., & Nigro, C. (2023). Hypoxemia and the Hypertension Risk in Obstructive Sleep Apnea. Respirar, 15(1), 9–15. https://doi.org/10.55720/respirar.15.1.2
Section
Artículos Originales

References

Nogueira F, Nigro C, Cambursano H, Borsini E, Silio J, Avila J. Practical guidelines for the diagnosis and treatment of obstructive sleep apnea syndrome. Medicina (Buenos Aires) 2013; 73: 349-362.

Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep 1997; 20:654-675. Doi: 10.1093/sleep/20.8.654.

Peppard PE, Ward NR, Morrell MJ. The impact of obesity on oxygen desaturation during sleep-disordered breathing. Am J Respir Crit Care Med 2009; 180:788-793. Doi: 10.1164/rccm.200905-0773OC.

Asakura T. Automated method for determination of oxygen equilibrium curves of red cell suspensions under controlled buffer conditions and its clinical applications. Celt Care Med 1979; 7:391-395. Doi: 10.1097/00003246-197909000-00008.

Fessi R, Zaibi H, Zayen K et al. La désaturation nocturne au cours du syndrome d’apnée du sommeil: corrélation avec la sévérité de la maladie. Revue des Maladies Respiratoires Actualités 2020; 12:258. Doi: 10.1016/j.rmra.2019.11.581

Peppard PE, Young T, Palta M, Skatrud JB. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000; 342:1378-1384. Doi: 10.1056/NEJM200005113421901.

Nieto FJ, Young TB, Lind BK et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000; 283: 1829-1836. Doi: 10.1001/jama.283.14.1829.

Woodrow Weiss J, Tamisier R, Yuzhen Liu. Sympathoexcitation and arterial hypertension associated with obstructive sleep apnea and cyclic intermittent hypoxia. J appl physiol 2015; 119:1449-1454. Doi: 10.1152/japplphysiol.00315.2015.

Lavie L. Obstructive sleep apnoea syndrome–an oxidative stress disorder. Sleep Med Rev 2003; 7:35-51. Doi: 10.1053/smrv.2002.0261.

Dopp JM, Reichmuth KJ, Morgan BJ. Obstructive sleep apnea and hypertension: mechanisms, evaluation, and management. Curr Hypertens Rep 2007; 9:529-34. Doi: 10.1007/s11906-007-0095-2.

Brooks D, Horner RL, Kozar LF. Obstructive sleep apnea as a cause of systermic hypertension. Evidence from a canine model. J. Clin Invest 1997; 99:106-109. Doi: 10.1172/JCI119120.

Brooks D, Horner RL, Kimoff RJ, Kozar LF, Render-Teixeira CL, Phillipson EA. Effect of obstructive sleep apnea versus sleep fragmentation on responses to airway occlusion. Am J Respir Crit Care Med 1997; 155:1609-1617. Doi: 10.1172/JCI119120.

Iwase N, Kikuchi Y, Hida W et al. Effects of repetitive airway obstruction on O2 saturation and systemic and pulmonary arterial pressure in anesthetized dogs. Am Rev Respir Dis 1992; 146:1402-1410. Doi: 10.1164/ajrccm/146.6.1402.

O'Donnell CP, Ayuse T, King ED, Schwartz AR, Smith PL, Robotham JL. Airway obstruction during sleep increases blood pressure without arousal. J Appl Physiol 1996; 80:773-781. Doi: 10.1152/jappl.1996.80.3.773.

Fletcher EC, Lesske J, Qian W, Miller CC 3rd, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992; 19:555-61. Doi: 10.1161/01.hyp.19.6.555.

Tamisier R, Pépin JL, Rémy J, Baguet JP, Taylor JA, Weiss JW, Lévy P. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur Respir J 2011; 37:119-128. Doi: 10.1183/09031936.00204209.

Gilmartin GS, Lynch M, Tamisier R, Weiss JW. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Phisiol Heart Circ Physiol 2010;299: H925–H931. Doi: 10.1152/ajpheart.00253.2009.

Van Den Aardweg JG, Karemaker JM. Repetitive apneas induce periodic hypertension in normal subjects through hypoxia. J Appl Physiol 1992; 72:821-827. Doi: 10.1152/jappl.1992.72.3.821.

Tkacova R, McNicholas WT, Javorsky M et al & European Sleep Apnoea Database study collaborators. Nocturnal intermittent hypoxia predicts prevalent hypertension in the European Sleep Apnoea Database cohort study. The European respiratory journal 2014; 44: 931–941. Doi: 10.1183/09031936.00225113.

Borsini E, Maldonado L, Décima T et al. Estrategia de utilización domiciliaria de la poligrafía respiratoria con instalación por el propio paciente. Rev Arg Med Resp 2013; 13:4-11.

Berry RB, Budhiraja R, Gottlieb DJ et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med 2012; 8:597–619. Doi: 10.5664/jcsm.2172.

Davies RJ, Belt PJ, Roberts SJ, Ali NJ, Stradling JR. Arterial blood pressure responses to graded transient arousal from sleep in normal humans. J Appl Physiol 1993; 74:1123-1130. Doi: 10.1152/jappl.1993.74.3.1123.

Lofaso F, Goldenberg F, d'Ortho MP, Coste A, Harf A. Arterial blood pressure response to transient arousals from NREM sleep in nonapneic snorers with sleep fragmentation. Chest 1998; 113:985-991. Doi: 10.1378/chest.113.4.985.

Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 2000; 111:1611-1619. Doi: 10.1016/s1388-2457(00)00363-1.

Martínez-García MA, Campos-Rodríguez F, Barbé F, Gozal D, Agustí A. Precision medicine in obstructive sleep apnoea. Lancet Respir Med 2019;7(5):456-64. Doi: 10.1016/S2213-2600(19)30044-X.

Punjabi NM, Caffo BS, Goodwin JL et al. Sleep-disordered breathing and mortality: a prospective cohort study. PloS Med 2009; 6: e1000132. Doi: 10.1371/journal.pmed.1000132.

Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up. Eur Respir J 2006; 28:596-602. Doi: 10.1183/09031936.06.00107805.

Redline S, Yenokyan G, Gottlieb DJ et al. Obstructive sleep apnea e hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 2010; 182:269-277. Doi: 10.1164/rccm.200911-1746OC.

Mediano O, González Mangado N, Montserrat JM et al. Documento internacional de consenso sobre apnea obstructiva del sueño. Arch bronconeumol (Article in press) Doi: 10.1016/j.arbres.2021.03.